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a‘ ABSTRACT
A numerical scheme based on polynomial approximation is
' ' presented for the calculation of upper and lower bounds for the flexibility
coefficient of end-loaded orthotropic cantilever beams in a state of plane
stress, through use of the principles of minimum potential energy and
] of minimum complementary energy. The degree-of-freedom of the two-
dimensional polyx')omials employed along with the elastic constants and

1 the depth-to-span ratio of the beam are external parameters of the

problem.




A Rayleigh-Ritz Detcrmination of Upper and Lower Bounds

for the Deflection of Orthotropic Cantilever Beams
by
S. Nair

INTRODUCTION

A formulation of the problem of the end-loaded cantilver beam,
which makes it possible to obtain upper and lower bounds for the flexibility
coefficient through the use of the principles of minimum potential energy
and of minimum complementary energy, has been reported earlier File
A later work [2] contains improved bounds obtained through the use of
arbitrary functions of the axial coordinate in the assumed admissible
expressions for displacements and stresses in the calculation of the energy
functionals. Although these improved bounds provide reliable corrections
to the elementary theory flexibility coefficient when the parameter p
= G/@ is not too large, the differences between the bounds becomes
significant for large values of p.

In what follows we use a Rayleigh-Ritz procedure in conjunction with
the Lagrange multiplier method to improve the bounds obtained in [2].

We approximate the displacement components in the potential energy
calculations and the stress components in the complementary energy calcu-
lations by polynomials in the coordinate variables. The coefficients in
these polynomials are obtained by solving the simultaneous algebraic
equations which result upon extremizing the energy functionals subject to

the constraint conditions on these polynomials.
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Numerical results obtained employing sixth-degree polynomials in

: two variables show that for isotropic beams when v = 1/3, and the

depth-to-length ratio is as high as 0.6 the maximum error in using the
average value of the bounds instead of the actual value of the flexibility
coefficient is less than 0.3%. Using polynomials of the same degree for

.

orthotropic beams this error comes out to be less than 1% when v = 1/2

and p = 100 for all depth-to-span ratios.
FORMULATION

We briefly restate the problem of the end-loaded orthotropic beam

as formulated in [1]. The inequality for the flexibility coefficient C reads

2 2
Y <cs— (1)
ZId ZIs

where V is the prescribed uniform end deflection and
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with 2c and a representing, respectively, the depth and the length of
the beam, and with Em = VEEY .

In equation (2), u and v are assumed axial and lateral displace-

ment components which are differentiable functions satisfying the displace-

. ment boundary conditions

U(a, y) = v,y =0 , VO, y =-v , (4)

ST




and in equation (3) 0 and T are stress components which satisfy the

equilibrium equations

@+ T _ =B 0T =8 (5)
X, X Y Y,y » X

and the stress boundary conditions

n
o

T(x, c) = 'Ey (x, £c) = EX(O. y) (6)

In what follows, we obtain upper and lower bounds for C by

maximizing ?s. and by minimizing i:l over a suitably restricted class

of polynomials.
UPPER BOUND CALCULATION

We introduce the dimensionless quantities

- X IR o
s B n & . a '’ M
L
(ox' 2 OY) A VEp (ox' ;' p? ) ¥ (8)
E
A = c? [T EG ’ (9
m

v* Eps Is , where

and have therewith, from (3), that Ts
o2 ) _ e 3 5
i " 2 _ 2 o 244 22
I'-ZI 7(0, n)dn I Izox 2VRA oxoy+ REA oy+A T ;dgdn.
o o o (10)

We satisfy the equilibrium equations (5) identically by writing

o = F y T =2 oF g " 11
x = F.om " F e i Bl “h
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r ! and assume F in the form

é M s m 2n-1

| . F = A € n » (12)
- mn

| &4 m=]1 n=]

| & where the Amn are arbitrary constants, except for the relations

bl
4 x
! X (@m-naAa_ =0 , m=1L2 .., M, (13)
n=1
N !
3. A =0 s ek B esis M o, (14) ,
mn
l n=1 i
,‘ which result upon satisfying the stress boundary conditions T = oy =0 H
at 1 = %1, with the condition ;x = 0 for £ = 0 being satisfied auto- q
" matically. !
x - i
Extremization of Is with respect to the Amn , subject to the con-
straint relations (13) and (14), is accomplished as follows.
'
We define a quantity I: by
s

SR M N N N
I =13+22 Bm(ZAmn)+ZzCm(Z(Zn-l)Amn) '
L m=2 = m=1 n=1
(15)

with Bm and Cm being Lagrange multipliers.
: - %
Setting 618 = 0, we obtain

Al

where 81 = 0, in view of the form of (15). From this we have further,

M N
‘ kz=:l sz {BAH" 2B, + 2C, (2% - 1)} 6A, , =0 (16)
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; a'i‘s k=T, . vi. M
- + B +(2¢-1)C =0 , B =0, s N
2 d3AL, k X f='1, o, N

Equations (17), together with (13) and (14), represent a system of

equations of just the right number to determine the unknown constants
A « B and '€ .
mn m m

We next obtain an expression for Is PN in terms of the coefficients

A To do this we make use of the fact that we may set GAkL = AkL in

ke’

equation (16) and write, using equations (13) and (14),

M g 2T,
—— = 0 . (18)
Kal =1 M Mt

Considering the linear and quadratic terms present in equation {10),

we may deduce from (10) in conjunction with (18) that

N
smax=.[ T, n)dn . (19)
(o]

With ; from (11) and (12), this becomes

N
E s ™ Z_l " el (20)

~

We introduce the associated Is e on the right of equation (1), and
therewith obtain the upper bound formula

C
U -1
C = N ’ (21)
o : A
In

n=1

where Co is the elementary-theory flexibility coefficient 1/2 Ep®.
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It remains to write the system (17) explicitly. To do this we

introduce -(;x' T, and 0 from equations (11) and (12) into equation (10)
for Ts and carry out the differentiations with respect to AA.kL and the

integrations with respect to £ and %. In this way equation (17) becomes

M R oo 1202 G- 1) 120 - 2)
& 2 Gnik+ 1) (ot 28~ 5)
m=1 n=1

e {Zn-1D@n-2)kk-1+@L-1)(2L-2)m(m - 1)
gl m+k- 1) (2n + 22 - 3)

3 “3”, mk (m-1) (k- 1) T mk (2n-1) (24~ 1) }A
) mn

(m+ k-3) (2n+24-1) (m+k-1) (2n+24-3

k=1,2, .4, M
« By - L= 1 G 4G, =0 , (22)

L= 2 e e, N
again with B1 = 0.
Setting k = 1, 4 = 1 in equation (22), we may sum the series which

occurs in (21), as

-
N C1 -1
> Mg B g (23)
n=1
and this enables us to write equation (21) in the final form
. C 2
L = A v (24)
C 1-C
1
It remains to solve (22), (13), and (14) in order to obtain the value
i of the Lagrange multipliers C1 .
2
We note that for M =1, N = 2, the above procedure gives
-
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CU/CO = 1 + 6)A®/5 which coincides, as it must, with a previously

obtained upper bound [1].
LOWER BOUND CALCULATION

Introducing the nondimensional displacements

- v - 3
¥ Ay ’ W= W , (25)
we write ?d = VEE* fd where

o - o m 2n-2 - - 2 m 2n-1
v e 3 F e (e g imEa . B h L& 9 :
m=1 n=] m=1 n=1
(27)
where, since ;(0, M) = -1, we have the constraint condition
M
a + 6 = 0 , =1 2, ssey N * (28)
mn In
m=]

We obtain a and b by minimizing I, with respect to these
mn mn d

coefficients, subject to (28), that is by extremizing

Gl N M
by s et B b b v 8.}, (29)
n=] m=1]

with the e being Lagrange multipliers.
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Setting GTd* = 0 gives

(i

M N aTd } % i\r:' bI—d
> SR # 2¢, ? Ba, , # — &b , =0 . (30)
=1 & { %a i 4 Bh N nG. g . F

Equating the coefficient of each GakL and ébk{. in (30) equal to

zero, we obtain the equations

d1

= Rk shelty IV

_Z_ad + ey k=1, 2 ] , P
s 7 ) ST SRERNEE
T ;
k=l 2, coe, M

%abd =0 ; . (32)
kL sy e

\
which, togeth er with (28), allow the determination of the unknown constants

a v B and c¢ 4
mn mn n i

We next obtain an expression for I . first in terms of the co-

d min

efficients a o and ultimately in terms of c, alone. To do this, we make

use of the fact that we may set in equation (30) éak{, = e, and Gbkl, = bk{,'

and write

M N al_d M’ N’ afd M N

E E a et 2 Z & D g Z Z C; a =0
ke B2l Rk T el WLt ™t o e G

(33)

Since Td is a quadratic form, the first two terms in (33) add up to

I . and we have then

d min
PPN S €, a . (34)
d min k=] £=} 1 k4




Equation (34) gives with the aid of the constraint cquations (28),

dmin -~ % 2 (35)

which, in connection with equation (1), gives the lower bound
formula

C

¥ 1
c—- T — A (36)
o S

It remains to write equations (31) and (32) in explicit form. We
accomplish this by introducing u and v from (27) into the equation (26),

and by carrying out the differentiations with respect to a and bk

k4 4

as well as the integrations with respect to ¢ and n. This gives

MI NI
b I 1 A® mk , fen-1) (22-1)
1-v° (m+k-1) (2n+24-1) * (m+k+1) (2n+22-3) ( “mn
m=] n=1
M N 2 - amn
= m{:l = {‘——Vg—““- )k(Zn-Z) + m(2£-l)§ nik) @izio5 " 0,
(37)

for k=1, 2, voes M" and £=1, 2, ..., N', and

M’ N’
Y mn
mZ=:l n2=:1 {———:—F“_v ; m(24-2) + k(Zn-l)} T
;d: )I_il 1 {2n-2) (24~ 2)
T S PP mtke 1) (2t 2L-5)
mk ey
(m+k-l) (21’)*"2{-3)} amn = A C‘L ’ (38)

for k=1, 2, oo, M and 4 = Ly By swey NG




Equation (37), (38) and (28) must now be solved in order to

obtain the value of ¢ in (36). Numerical results reported in the next
gsection are obtained by setting M’ =M - I, N’ = N, so as to have an
equal number of a-terms and b-terms in the experssions for the shear-
strains which, numerical evidence indicates, is the most effective way

to carry out this work. We note that the choice M = 3, N = ] corresponds
to the ""semi-elementary' polynomial used in the calculation of the lower

i 2 2017 .
bound, C_/C 1 w X" 1]
DISCUSSION

In Table 1, values of upper and lower bounds are presented for
isotropic beams when v = 1/3, and c/a = 0.3 and 0.5, as functions of
the integers M and N representing the number of degrees-of-freedom
of the associated admissible polynomials. The Hilbert-type matrices
involved in the numerical work, require double precision arithmetic in the
solution procedures for large values of M and N. The results show that
in the extreme case of a beam which is as deep as it is long ( c/a
= 0.5), the maximum percentage error in employing the mean value of the
present bounds with M = N = 6, instead of the actual flexibility coefficient
is only 0. 22%.

Numerical values of the upper and lower bounds obtained for
orthotropic beams, with the large value p = G/ Em = 100 when Vv

= 1/2, are plotted against X\ = VE/G c/a in Figure l. To obtain a

10




maximum error of less than one percent it is found nccessary to use

M = N = 6 in both upper and lower bound calculations. These results

are represented by the curves U66 and L66. For the sake of comparison,
we also include the bound curves U2 and L4 obtained in [2]. The

bounds Ul2 and L31 are equivalent to the earlier results obtained

in [1]). The bound curves U66 an;i L66 show that there is a decrease

in flexibility for small A. As shown previously in [2], this decrease is
due to the end constraint v = 0 at x = a. The shear deformation effects
dominate when A is large and the flexibility progressively increases with

increasing values of A.
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Table 1. Convergence of the bounds for
isotropic beams when v = 1/3.
efa = 0.8 cla = 0.5
% %
M, = cL/Co CU/Co Error? CL/Co cU/Co Error
t 3,3 1.2070 | 1.2805 3.05 1.6974 | 1.7716 2.19
: 4,4 1. 2260 1,2762 2.05 1. 7188 1,7032 1. 29
“' 53 1. 2605 1. 2754 0.59 1. 7447 1. 7674 0.65
5,4 1. 2618 1. 2734 0. 46 1. 7457 1. 7611 0. 44
1
. 545 1. 2628 1. 2732 (3 9 1. 7483 1. 7597 0.33
: 6,6 1. 2642 I 2% k5 0. 29 1. 7501 1.7581 0. 22
|
3 C C
+ Pt L
: % Error = G x 100.
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